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Abstract – This work compares Artificial Neural Networks (ANN) to four density based semi 
empirical modelling of the solubility of seven non-steroidal anti-inflammatory (NSAID), two anti-
Cancer and two anti-AIDS drugs in supercritical carbon dioxide (scCO2). Experimental literature data 
for the eleven drugs were used for training (152 data points) and validation (75 data points) of the 
ANN model. The model has five inputs (two intensive state variables and three pure drug properties) 
and one output (solubility of solid drug in scCO2 in mole fraction). Statistical analysis of the 
predictability of the neural networks model shows excellent agreement with experimental data. 
Furthermore, the comparison in terms of average absolute relative deviation (AARD) between the 
ANN predicted results for each binary for the whole temperature and pressure range and results 
predicted by four density based models (Chrastil, Kumar and Johnston, Bartle et al., and Méndez-
Santiago and Teja) show that the ANN model correlates far better the solubility of the eleven solid 
drugs in scCO2.  
Keywords: Solubility; Artificial neural networks; Density based models, solid drugs; Supercritical 
Carbon dioxide. 
 
Introduction 
The extensive experimental data of solubility of biomolecules and pharmaceutical compounds in 
supercritical fluids that are being published every year together with recent literature related to 
applications of supercritical fluid extraction of naturaceuticals, and pharmaceutical particle formation 
processes, such as RESS, SAS, SEDS and PGSS, are clear indications of the increasing level of 
interest in supercritical fluid (SCF) technology in the pharmaceutical industry. The accurate 
knowledge of the solubility of solid drugs in supercritical fluid phase and the detailed understanding of 
the corresponding phase equilibrium are of paramount importance for the effectiveness and the 
correspondent technical and economical success of SCF processes. Attempts of modelling the 
solubility of solid solutes in SCF phase for the purpose of correlation and or prediction have followed 
suite though they have not been yet satisfactory to the desired level of accuracy. Most commonly, the 
solubility of a solid in a SCF phase is correlated using empirical and semi-empirical models based on 
density of the SCF, pressure and temperature and equations of state (EoS)[1,2]. 
 The EOS approach, whether using simple semi-empirical cubic EOS or more complex and 
theoretical-sound state of the art EOS [3, 4], employs the solute properties that are not always 
available and cannot easily determined experimentally. The cubic EOS representation of solid-SCF 
equilibrium, which is used most often due to the relative computational simplicity, requires critical 
properties, acentric factor, sublimation pressure and molar volume of the solute. In the absence of 
experimental values of these parameters, which is more often the case particularly for complex 
pharmaceutical compounds, they have to be estimated using group contribution methods, thus adding 
a factor of uncertainty to the approach. As an example, Valderrama and Zavaleta [5] showed that 
variations of 10 % in the sublimation pressure of the solute may produce deviations between 5 and 19 
% in solubility calculations. Coimbra et al. [2] have also demonstrated the sensitivity of solubility 
correlation to critical properties when using cubic EOS. 

 The use of empirical and semi-empirical models has been extensively cited in literature. 
These models are based on simple error minimisation using least square method to determine the 
adjustable parameters of the model, and for most of them there is no need to use physical properties of 

mailto:simoussa_cherif@yahoo.fr


the solute. All these models assume a solute solubility dependence on the solvent density, temperature 
and pressure. This simple representation is the reason of the poor correlation that can be obtained for 
some systems which is why modification are being made, continuously, to previous models in order to 
increase the level of accuracy of the predictions. A recent and brief review of density-based models is 
given by Sparks et al. [6].  

In the absence of efficient predictive models, artificial neural network (ANN) modelling has 
been suggested in a previous work [7] as a feasible and reliable alternative for correlating the 
solubility of solid solutes in scCO2. This work extends the application of ANN modelling of the 
solubility of solid drugs in scCO2 to seven NSAID (Flurbiprofen, Ibuprofen, Ketoprofene, 
Nabumetone, Naproxen, Phenylbutazone, Salicylamide), two anti-Cancer (5-fluorouracil, Thymidine) 
and two anti-AIDS drugs (Azodicarbonamide, 2-Phenyl-4H-1,3-benzoxazin-4-one). The results in 
terms of average absolute relative deviation are compared to those obtained by four of the most 
commonly used density-based models (Chrastil [8], Kumar and Johnston [9], Bartle et al.[10], and 
Méndez-Santiago and Teja[11]).  The experimental data of the solubility of solid drugs in sc CO2 used 
in this work were those reported by Stassi et al.[12] for Ketoprophen; Ting et al.[13] for Naproxen; 
Charoenchaitrakool et al.[14] for Ibuprophen; Duarte et al.[15] for Flurbiprohpen; Su and Chen [16] 
for Nabumetone, Phenylbutazone, and Salicylamide;  and Suleiman et al.[17] for 5-fluorouracil, 
Thymidine, Azodicarbonamide and 2-Phenyl-4H-1,3-benzoxazin-4-one. The PE software [18] was 
used for the estimation of critical properties and acentric factors of the solid drugs and the density of 
the solvent. The critical temperature and pressure of the solutes were calculated with Joback group 
contribution method, the acentric factor of solutes was determined by the Lee–Kesler correlation, and 
the CO2 density was estimated with the BACK EOS. 
 
Solubility modelling using density-based models 

Most of the empirical models show a dependence of lny2 on 1/T because solubility is closely 
connected to solute sublimation pressure, which can be expressed by a Clausius–Clapeyron equation. 
The models considered in this work are: 

• Chrastil (CH)[8]  model in which a dependence of lny2 on lnρ1 is considered: 

T
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• Kumar and Johnston (KJ)[9] model in which a dependence of lny2 on ρ1 is proposed: 
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• Bartle et al. (BR)[10] model in which a dependence of  ln(yB2P) on ρ1 is considered: 
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• Mendez-Santiago and Teja (MT)[11] model in which a dependence of ln(y2P) on ρ1 is 
considered: 

     TdddPyT 21102ln ++= ρ       (4) 
 
Solubility modelling using ANN 

In order to describe the phase behavior of the eleven CO2(1)-solid drug(2) binaries by one 
ANN model a total of six variables have been selected in this work: three intensive state variables 
(equilibrium temperature, equilibrium pressure and the solubility of the solid drug in SCF phase) and 
three pure component properties of the NSAID (critical temperature, critical pressure and acentric 
factor). The equilibrium temperature (T), the equilibrium pressure (P) and the pure component 
properties of the solid drug ( Tc, Pc and ω)  have been selected as input variables and the solubility  of 
the solid drug in the SCF phase (y2) as the output variable (Fig.1). A detailed description of the 
strategy used for the application of ANN modeling of phase equilibria has been described in a 
previous work [19].  
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Figure 1: Multi-layer feedforward neural network for the prediction of the solubility of the solid drug 
in the SCF phase. 

 
Results and discussion 

In this work both the ANN modelling and the least square fitting of the parameters of density 
based models were carried out using MATLAB®.  Table 1 shows the structure and the details of 
MATLAB functions used for the optimized ANN. For the least square fitting of the parameters o the 
density based models the lsqcurvefit MATLAB function was used with the option of the 'Levenberg-
Marquardt’ algorithm on. 

A first and global comparison between the ANN models and density based models is shown 
through validation agreement plots of the estimated versus experimental solubility (Figs 2-6). It is 
clear from the coefficient of correlation and the distribution of data points on the y=x line that the 
ANN model correlates the experimental better than the four density based models. A more detailed 
comparison is considered in table 2, where the performance of each model, in terms of the average 
absolute relative deviation (AARD), is shown for each of the solid drugs. This table shows that to the 
exception of the CO2-Azodicarbonamide system, where the Bartle et al. model performed best, the 
ANN model AARD for the remaining systems are the lowest and do not exceed 6.49%. Also, the table 
shows that none of the density-based models could correlate the data of the eleven systems better than 
the other models, though globally the Chrastil model performance is slightly better than the other three 
models. In order to illustrate further the correlating performance of the models the plots of  solubility 
versus pressure for CO2(1)-Nabumetone(2) at 328K ,  CO2(1)-Phenylbutazone(2) at 328K and CO2(1)-
Azodicarbonamide(2) at 318K are shown in Fig. 7-9 respectively. 

 
     Table 1:  Structure of the optimised ANN 

Network type 'Feedforward backpropagation' : newff 

Layers Number of neurons Activation function 

Input Layer 5 -------- 

1st Hidden Layer 24 Logarithmic Sigmoid : logsig 

2nd Hidden Layer 14 Logarithmic Sigmoid : logsig 

3rd Hidden Layer 9 Logarithmic Sigmoid' : logsig 

Output Layer 1 Linear : purelin 

Training Algorithm 'Levenberg-Marquardt backpropagation' : trainlm 

 
 
 



Table 2: Comparison of the AARD (%) of the predicted solubility of the solid drugs in scCO2 obtained by      
ANN model and density-based models 

AARD(%) System ANN CH KJ BR MT 
 Flurbiprofen  6.49 10.24 6.97 12.82 11.89 
Ibuprofen  1.73 11.39 22.47 30.14 13.67 
Ketoprofene  6.01 10.91 15.75 39.75 13.82 
Nabumetone  1.54 10.70 23.77 17.41 19.55 
Naproxen  2.69 6.55 4.36 5.39 5.31 
Phenylbutazone  3.95 11.08 27.38 29.77 22.82 
Salicylamide  3.32 7.72 16.45 26.53 12.71 
5-fluorouracil 3.34 8.71 8.51 5.76 8.75 
Thymidine 5.18 27.20 26.83 10.65 28.24 
Azodicarbonamide  4.83 15.86 14.97 3.20 17.17 
2-Phenyl-4H-1,3-

benzoxazin-4-one 6.02 31.89 30.78 32.47 33.21 

Global 4.35 14.52 18.57 19.27 17.61 

 

  
Figure 2: Validation agreement plot of the ANN 
model  

Figure 3: Validation agreement plot of Chrastil 
model 

 
 

Figure 4: Validation agreement plot of Kumar and 
Johnston model 

Figure 5: Validation agreement plot of Bartle et al. 
model 

 



   

 
Figure 6: Validation agreement plot of Mendez-
Santiago and Teja model 

Figure 7: Solute solubility versus pressure plot for 
CO2(1)-Nabumetone(2) at 328K. 

 

 
Figure 8: Solute solubility versus pressure plot for 
CO2(1)-Phenylbutazone(2) at 328K. 

Figure 9: Solute solubility versus pressure plot for 
CO2(1)-Azodicarbonamide(2) at 318K. 

 
CONCLUSION 

A feed forward artificial neural network model has been used to predict the solubility of 
eleven solid drugs in scCO2 given the equilibrium temperature, the equilibrium pressure and the 
critical temperature, the critical pressure and the acentric factor of the solid solute. The optimized NN 
consists of five neurons in the input layer, three hidden layers with 24, 14 and 9 neurons respectively 
and one neuron in the output layer. This was obtained by applying a strategy based on assessing the 
parameters of the best fit of the validation agreement plots (slope and y intercept of the equation of the 
best linear fit and the correlation coefficient R2) for the validation data set as a measure of the 
predictive ability of the model. The same data set has been correlated using Chrastil, Kumar and 
Johnston, Bartle et al. and Mendez-Santigo and Teja density-based models. The comparison in terms 
of the AARD% shows that the ANN model correlates the eleven systems far better than the four 
density-based models, and that none of these could correlate all the eleven systems better than the 
other models, though globally Chrastil model performed slightly better than the other three models. 
Therefore, the ANN model can be reliably used to estimate the solubility of the eleven solute-scCO2 
binaries within the ranges of temperature and pressure considered in this work without the need 
neither to accurate estimates of critical properties and acentric factor of the solid solutes nor to the 
density of the solvent. This study also shows that a single ANN model could be developed for the 
prediction of the solubility of a mixed drugs (having different therapeutic effect) in scCO2, provided 
reliable experimental data are available, to be used in supercritical fluid processes. 
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